STC: Semantic Taxonomical Clustering for Service Category Learning
نویسندگان
چکیده
— Service discovery is one of the key problems that has been widely researched in the area of Service Oriented Architecture (SOA) based systems. Service category learning is a technique for efficiently facilitating service discovery. Most approaches for service category learning are based on suitable similarity distance measures using thresholds. Threshold selection is essentially difficult and often leads to unsatisfactory accuracy. In this paper, we have proposed a self-organizing based clustering algorithm called Semantic Taxonomical Clustering (STC) for taxonomically organizing services with self-organizing information and knowledge. We have tested the STC algorithm on both randomly generated data and the standard OWLS TC dataset. We have observed promising results both in terms of classification accuracy and runtime performance compared to existing approaches.
منابع مشابه
Word clustering effect on vocabulary learning of EFL learners: A case of semantic versus phonological clustering
The aim of this study is to determine the effect of word clustering method on vocabulary learning of Iranian EFL learners through a case of semantic versus phonological clustering. To this effect, 80 homogeneous students from four intermediate classes at an English institute in Torbat e Heydariyeh participated in this research. They were assigned to four groups according to semantic versus phon...
متن کاملSemantic Suffix Net Clustering for Search Results
Suffix Tree Clustering (STC) uses the suffix tree structure to find a set of snippets that share a common phrase and uses this information to propose clusters. As a result, STC is a fast incremental algorithm for automatic clustering and labeling but it cannot cluster semantically similar snippets. However, the meaning of the words is indeed an important property that relates them to other word...
متن کاملWeb Service Clustering using a Hybrid Term-Similarity Measure with Ontology Learning
Clustering Web services into functionally similar clusters is a very efficient approach to service discovery. A principal issue for clustering is computing the semantic similarity between services. Current approaches use similarity-distance measurement methods such as keyword, information-retrieval or ontology based methods. These approaches have problems that include discovering semantic chara...
متن کاملSemantic Trajectory Compression
In the light of rapidly growing repositories capturing the movement trajectories of people in spacetime, the need for trajectory compression becomes obvious. This paper argues for semantic trajectory compression (STC) as a means of substantially compressing the movement trajectories in an urban environment with acceptable information loss. STC exploits that human urban movement and its large–sc...
متن کاملSemantic Preserving Data Reduction using Artificial Immune Systems
Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1303.5926 شماره
صفحات -
تاریخ انتشار 2013